

N107A Process Geometry

Features

- Cost effective die shrink geometry
 Low gate leakage: 4.0pA typical
- · Low Ciss: 3.8pF typical
- Minimum BVgss: -75V
- · High input impedance
- · High radiation tolerance
- RoHS, REACH, CMR compliant
- Small die: 322um X 334um X 203um
- Bond pads: 90um X 90um
- · Substrate connected to gate
- · Au back-side finish

Geometry Top View

Standard Parts

IFN160A, IFN160B, IFN160C

InterFET Similar Geometries

N0014AL, N0016SH, N0016SS, N0026SL, N0026SS, N0030SL

InterFET Similar Parts

- 2N4339, 2N4340, 2N4302, J202, 2N5484, IFBF510, IFBF511
- SMP4339, SMP4340, SMP4302, SMPJ202, SMP5484, SMPBF510, SMPBF511

InterFET Similar Dual Parts

- IFN5911, IFN5912
- SMP5911, SMP5912

Applications

- General: Amplifiers; High impedance switches; Signal mixers
- Audio: Tone control circuits; Headphone amplifiers; Audio filters; Preamplifier Speaker drive;
 Microphone impedance transformation and drive; Phono preamplifiers
- Military/Aero: Radar and communication systems; Missiles and guidance systems; Radiation detection
- Medical: Medical imaging systems; Medical monitors and recorders; Ultrasound equipment

Description

The InterFET N017A die is targeted for cost sensitive low noise designs. These parts are ideal for audio mic and preamplifier designs. Gate leakages are typically less than 3pA at room temperatures. Exact cross for 2SK160 JFET. Available in waffle pack, matched pair waffle pack, unsawn wafer, and sawn wafer options.

Ordering Information Custom Part and Binning Options Available

Part Number	Description	Case	Packaging
IFN160ACOT; IFN160BCOT;			
IFN160CCOT	Chip Orientated Tray (COT Waffle Pack)	COT	400/Waffle Pack
IFN160ACFT; IFN160BCFT;			
IFN160CCFT	Chip Face-up Tray (CFT Waffle Pack)	CFT	400/Waffle Pack

Electrical Characteristics

Maximum Ratings (@ TA = 25°C, Unless otherwise specified)

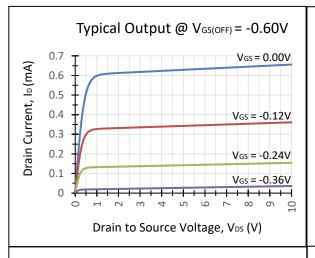
	Parameters	Min	Max	Unit		
V _{RGS}	Reverse Gate to Source or Drain Voltage	-75		V		
I _{FG}	Continuous Forward Gate Current		10	mA		
Tı	Operating Junction Temperature	-55	150	°C		
T _{STG}	Storage Temperature	-65	175	°C		

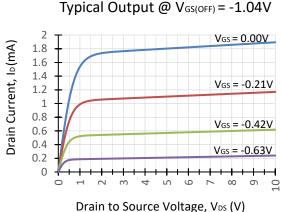
Static Characteristics (@ TA = 25°C, Unless otherwise specified)

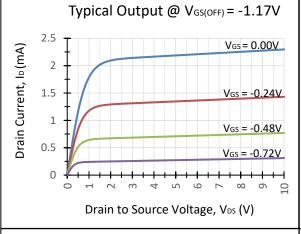
	Parameters	Conditions	Min	Тур	Max	Unit
BV _{GSS}	Gate to Source Breakdown Voltage	$I_{G} = -1\mu A$, $V_{DS} = 0V$	-75	-80		٧
I _{GSS}	Gate to Source Reverse Current	$V_{GS} = -40V, V_{DS} = 0V$		-4	-100	pA
V _{GS(OFF)}	Gate to Source Cutoff Voltage	V _{DS} = 10V, I _D = 1nA	-0.4		-2	V
I _{DSS}	Drain to Source Saturation Current	V _{DS} = 10V, V _{GS} = 0V	0.2		4	mA

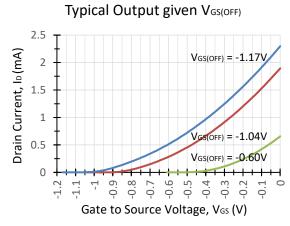
Dynamic Characteristics (@ TA = 25°C, Unless otherwise specified)

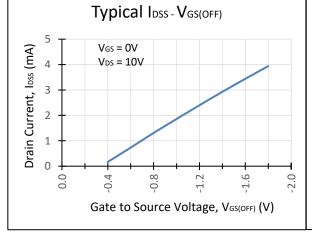
	Parameters	Conditions	Min	Тур	Max	Unit
GFS	Forward Transconductance	$V_{DS} = 10V$, $V_{GS} = 0 V$, $f = 1kHz$		3.5		mS
C _{iss}	Input Capacitance	$V_{DS} = 10V$, $V_{GS} = 0 V$, $f = 1MHz$		3.8		pF
Crss	Reverse Transfer Capacitance	$V_{DS} = 0V, V_{GS} = -10 V,$ f = 1MHz		1.8		pF
e _n	Noise Voltage	$V_{DS} = 4V$, $I_D = 5mA$, f = 1kHz		2.3		nV/√Hz

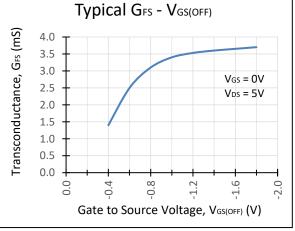


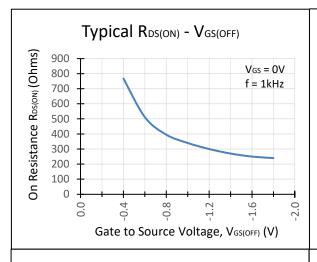


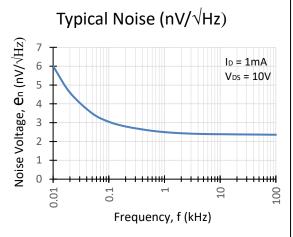


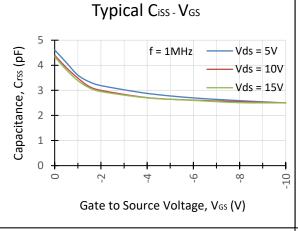


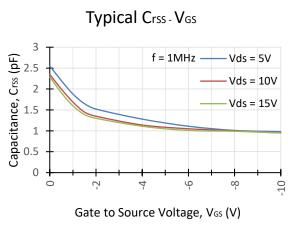

Typical Characteristics

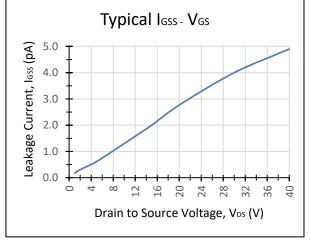


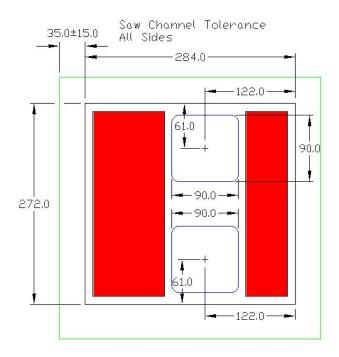


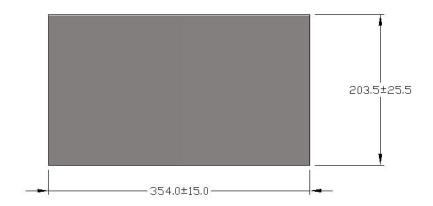







Typical Characteristics (Continued)





N107A Die Geometry Mechanical

Raw Die Dimensions

1. All linear dimensions are in microns (um).

Compliance and Legal

Environment

InterFET parts follow the latest RoHS Compliance, REACH Compliance, Proposition 65 Statement, TSCA Statement, and Chemical Disposal and Waste Mitigation requirement and guidelines. For more on InterFET's Environmental Commitment please visit www.lnterFET.com/environmental/.

Package materials

Parameters	SOT23	SOIC8	TO-92	Metal Case
Alloy	CDA194	C194 1/2H	C194 1/2H	Kovar
Cu	Balance	97% min	97% min	
Fe	2.1 – 2.6%	2.1 – 2.6%	2.1 – 2.6%	53%
Zn	0.05 - 0.2%	0.05 - 0.2%	0.05 - 0.15%	
Р	0.015 - 0.15%	0.015 - 0.15%	0.015 - 0.15%	
Pb	0.03% max	0.03% max	0.03% max	
Ni				29%
Со				17%
Mn				0.3%
Si				0.2%
С				<0.01%
Au				Plating

Package tests

Parameters	SOT23	SOIC8	TO-92	Metal Case
MSL	Level 1	Level 1	N/A	N/A
ESD	Class M4 Machine Model Class 3A HBM			

Legal Notice

InterFET Corporation reserves the right to make corrections, enhancements, improvements, modifications, and other changes to its semiconductor products without further notice to this document and any product described herein. InterFET does not assume any liability arising out of the application or use of this document or any product described herein. Unless InterFET has explicitly designated an individual product as meeting the requirements of a particular industry standard, InterFET is not responsible for any failure to meet such industry standard requirements.

InterFET Corporation assumes no liability for a customers product design or applications. Corporate designers and others who are developing systems that incorporate InterFET products understand and agree that they remain responsible for using their independent analysis, evaluation and judgment in designing their applications. Corporate designers and others have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications with all applicable regulations, laws and other applicable requirements.

InterFET Corporation resources are provided "as is" with potential faults. InterFET disclaims all other warranties or representations, express or implied, regarding resources or use thereof, including but not limited to accuracy or completeness, title, any widespread failure warranty and any implied warranties of merchantability, fitness for a particular purpose, and non-infringement of any third party intellectual property rights. InterFET shall not be liable for and shall not defend or indemnify designer against any claim, including but not limited to any infringement claim that relates to or is based on any combination of products even if described in InterFET resources or otherwise. In no event shall InterFET be liable for any actual, direct, special, collateral, indirect, punitive, incidental, consequential or exemplary damages in connection with or arising out of InterFET resources or use thereof, and regardless of whether InterFET has been advised of the possibility of such damages.