

IFNU424, IFNU425, IFNU426 Dual Matched N-Channel JFET

Support

Features

- InterFET N0001H Geometry
- Low gate leakage: 750fA typical @20V
- Low Ciss: 3pF typical
- Typical noise: 2.0 nV/VHz
- Typical gain: 2mS
- Low cutoff voltage: -1.0 typical
- High radiation tolerance
- RoHS, REACH, CMR compliant
- Custom test and binning options available
- SMT, TH, and bare die package options
- Edge case SPICE modeling: <u>InterFET SPICE</u>

Industry Standard Crosses

TBD

InterFET Similar Parts

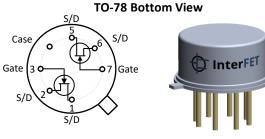
2N4118-9A

InterFET Dual Parts

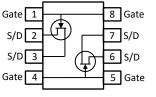
IFNU421-2-3

Applications

- General: Amplifiers; Switches; Voltage regulators; Oscillators; Signal mixers; Noise generators
- Military/Aero: Radar; Communications; Satellites; Missiles guidance; Hydrophone Pre-Amps
- Medical: Medical imaging systems; Medical monitors and recorders; Ultrasound equipment
- Audio: Tone control circuits; Headphone amplifiers; Audio filters; Electret Microphone ٠


Description

The -40V InterFET IFNU424, IFNU425, and IFNU426 JFET's are targeted for ultra high input impedance applications for differential amplification and impedance matching. Gate leakages are less than 1pA at room temperatures. The TO-78 package is hermetically sealed and suitable for military applications. Custom specifications, matching, and packaging options are available.


Ordering Information Custom Part and Binning Options Available

Part Number	Description	Case	Packaging
IFNU424; IFNU425; IFNU426	Through-Hole	TO-78	Bulk
SMPU424; SMPU425; SMPU426;	Surface Mount	SOIC8	Bulk
SMPU424TR; SMPU425TR;	7" Tape and Reel: Max 500 Pieces		Minimum 500 Pieces
SMPU426TR	13" Tape and Reel: Max 2,500 Pieces	SOIC8	Tape and Reel
IFNU424COT; IFNU425COT;			
IFNU426COT *	Chip Orientated Tray (COT Waffle Pack)	СОТ	70/Waffle Pack
IFNU424CFT; IFNU425CFT;			
IFNU426CFT *	Chip Face-up Tray (CFT Waffle Pack)	CFT	70/Waffle Pack

* Bare die packaged options are designed for matched specifications but not 100% tested

NOTE: S/D pins are interchangeable Source Drain connections

Electrical Characteristics

Maximum Ratings (@ T_A = 25°C, Unless otherwise specified)

	Parameters	TO-71	SOIC-8	Unit
VRGS	Reverse Gate Source and Gate Drain Voltage	-20	-20	V
I _{FG}	Continuous Forward Gate Current	50	50	mA
PD	Continuous Device Power Dissipation ¹	500	350	mW
Р	Power Derating ¹	3.3	2.8	mW/°C
Tj	Operating Junction Temperature	-65 to 175	-55 to 150	°C
Tstg	Storage Temperature	-65 to 175	-55 to 150	°C

Support

¹ Thermal power dissipation and derating values obtained with gate pin (substrate) thermally connected to pad and/or internal layer.

Static Characteristics (@ TA = 25°C, Unless otherwise specified)

			INFU424, INFU425, INFU426			
	Parameters	Conditions	Min	Тур	Max	Unit
V(BR)GSS	Gate to Source Breakdown Voltage	$I_G = -1\mu A, V_{DS} = 0V$	-40	-60		v
BV _{G1G2}	Gate to Gate Breakdown Voltage	$I_{G} = -1\mu A$, $I_{D} = 0A$, $I_{S} = 0A$	<u>+</u> 40			v
I _{GSS}	Gate to Source Reverse Current	V _{GS} = -20V, V _{DS} = 0V, T _A = 25°C V _{GS} = -20V, V _{DS} = 0V, T _A = 125°C			-3 -3	pA nA
lg	Gate Operating Current	V _{DS} = 10V, I _D = 30μA, T _A = 25°C V _{DS} = 10V, I _D = 30μA, T _A = 125°C			-0.5 -500	рА pA
Vgs(off)	Gate to Source Cutoff Voltage	V _{DS} = 10V, I _D = 1nA	-0.4		-3	v
V _{GS}	Gate Source Voltage	$V_{DS} = 10V, I_D = 30\mu A$			-2.9	v
I _{DSS}	Drain to Source Saturation Current	$V_{DS} = 10V, V_{GS} = 0V$ (Pulsed)	60	1800		μA

Dynamic Characteristics (@ TA = 25°C, Unless otherwise specified)

				INFU424, INFU425, INFU426			
Р	arameters	Conditions		Min	Тур	Max	Unit
GFS	Forward Transconductance	$V_{DS} = 10V, V_{GS} = 0V,$ f = 1kHz	,	100		1500	μS
Gos	Output Conductance	V _{DS} = 10V, I _D = 30μA, f =	1kHz			3	μS
Ciss	Input Capacitance	V _{DS} = 10V, V _{GS} = 0V, f = 1	.MHz			3	рF
Crss	Reverse Capacitance	V _{DS} = 10V, V _{GS} = 0V, f = 1	.MHz			1.5	рF
en	Equivalent Circuit Input Noise Voltage	V _{DS} = 10V, I _D = 30μA f = 10Hz	,		20	70	nV/√Hz
NF	Noise Figure	V _{DS} = 10V, I _D = 30μA f = 10Hz, R _G = 1ΜΩ	′			1	dB
$\left V_{GS1} - V_{GS2}\right $	Differential Gate Source Voltage	V _{DS} = 10V, I _D = 30µA	INFU424 INFU425 INFU426			10 15 25	mV
$\frac{ V_{GS1} - V_{GS2} }{\Delta T}$	Differential Gate Source Voltage with Temperature	V _{DS} = 10V, I _D = 30μA T _A = -55°C, T _B = 25°C, T _C = 125°C	INFU424 INFU425 INFU426			1 2.5 5	mV/°C
CMRR	Common Mode Rejection Ratio	V _{DD} = 10V to 20V, I _D = 30µA	INFU424 INFU425 INFU426	80			dB

Technical

Support

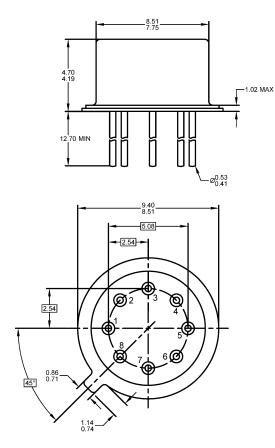
Typical IFNU424, IFNU425, IFNU426 Characteristics

Technical

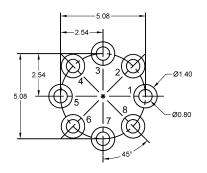
Support

Typical IFNU424, IFNU425, IFNU426 Characteristics (Continued)

Technical Support


Order

Now


IFNU424-5-6

TO-78 Mechanical and Layout Data

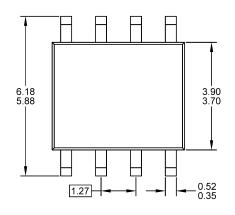
Package Outline Data

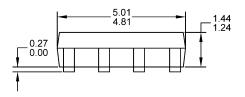
Suggested Through-Hole Layout

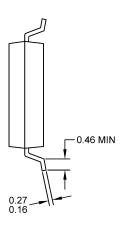
- 1. All linear dimensions are in millimeters.
- 2. Eight leaded device. Not all leads are shown in drawing views.
- 3. Some package configurations will not populate pin 8 and/or pin 4.
- 4. Package weight approximately 0.44 grams
- 5. Bulk product is shipped in standard ESD shipping material
- 6. Refer to JEDEC standards for additional information.

- 1. All linear dimensions are in millimeters.
- 2. Pads 8 and/or pad 4 can be eliminated for devices with less pins.
- The suggested land pattern dimensions have been provided as an eight pin bent lead reference only. A more robust pattern may be desired for wave soldering or reduced pin count.

Order Now

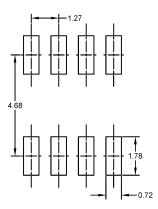

Technical


Support


IFNU424-5-6

SOIC8 Mechanical and Layout Data

Package Outline Data



- 1. All linear dimensions are in millimeters.
- 2. Package weight approximately 0.21 grams
- 3. Molded plastic case UL 94V-0 rated
- For Tape and Reel specifications refer to InterFET CTC-021 Tape and Reel Specification, Document number: IF39002
- 5. Bulk product is shipped in standard ESD shipping material
- 6. Refer to JEDEC standards for additional information.

Suggested Pad Layout

- 1. All linear dimensions are in millimeters.
- 2. The suggested land pattern dimensions have been provided for reference only. A more robust pattern may be desired for wave soldering.

Compliance and Legal

Environment

InterFET parts follow the latest RoHS Compliance, REACH Compliance, Proposition 65 Statement, TSCA Statement, and Chemical Disposal and Waste Mitigation requirement and guidelines. For more on InterFET's Environmental Commitment please visit www.lnterFET.com/environmental/.

Technical

Support

Package materials

Parameters	SOT23	SOIC8	TO-92	Metal Case
Alloy	CDA194	C194 1/2H	C194 1/2H	Kovar
Cu	Balance	97% min	97% min	
Fe	2.1 - 2.6%	2.1 – 2.6%	2.1 - 2.6%	53%
Zn	0.05 – 0.2%	0.05 – 0.2%	0.05 - 0.15%	
Р	0.015 - 0.15%	0.015 - 0.15%	0.015 - 0.15%	
Pb	0.03% max	0.03% max	0.03% max	
Ni				29%
Со				17%
Mn				0.3%
Si				0.2%
С				<0.01%
Au				Plating

Package tests

Parameters	SOT23	SOIC8	TO-92	Metal Case	
MSL	Level 1	Level 2	N/A	N/A	
ESD			Class M4 Machine Model		
LJD	Class 3A HBM	Class 3A HBM	Class 3A HBM	Class 3A HBM	

Legal Notice

InterFET Corporation reserves the right to make corrections, enhancements, improvements, modifications, and other changes to its semiconductor products without further notice to this document and any product described herein. InterFET does not assume any liability arising out of the application or use of this document or any product described herein. Unless InterFET has explicitly designated an individual product as meeting the requirements of a particular industry standard, InterFET is not responsible for any failure to meet such industry standard requirements.

InterFET Corporation assumes no liability for a customers product design or applications. Corporate designers and others who are developing systems that incorporate InterFET products understand and agree that they remain responsible for using their independent analysis, evaluation and judgment in designing their applications. Corporate designers and others have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications with all applicable regulations, laws and other applicable requirements.

InterFET Corporation resources are provided "as is" with potential faults. InterFET disclaims all other warranties or representations, express or implied, regarding resources or use thereof, including but not limited to accuracy or completeness, title, any widespread failure warranty and any implied warranties of merchantability, fitness for a particular purpose, and non-infringement of any third party intellectual property rights. InterFET shall not be liable for and shall not defend or indemnify designer against any claim, including but not limited to any infringement claim that relates to or is based on any combination of products even if described in InterFET resources or otherwise. In no event shall InterFET be liable for any actual, direct, special, collateral, indirect, punitive, incidental, consequential or exemplary damages in connection with or arising out of InterFET resources or use thereof, and regardless of whether InterFET has been advised of the possibility of such damages.